
CHAPTER 7 
BENDING OF STRAIGHT BEAMS 

I 
In this chapter, we assume that there is a plane in which the forces that act on 

a beam lie. This plane is called the plane of loads. In addition, we assume that the plane of 
loads passes through a point (the shear center) in the beam cross section, so that there is 
no twisting (torsion) of the beam; that is, the resulting forces that act on any cross section 
of the beam consist only of bending moments and shear forces. The concept of shear cen- 
ter is studied in Chapter 8. For now, though, we simply assume that the net torque is zero. 
We introduce the concepts of symmetrical and nonsymmetrical bending of straight beams 
and the plane of loads in Section 7.1. In Section 7.2, we develop formulas for stresses in 
beams subjected to nonsymmetrical bending. In Section 7.3, deflections of beams are 
computed. In Section 7.4, the effect of an inclined load relative to a principal plane is 
examined. Finally, in Section 7.5, a method is presented for computing fully plastic loads 
for cross sections in nonsymmetrical bending. 

7.1 FUNDAMENTALS OF BEAM BENDING 

7.1.1 Centroidal Coordinate Axes 

The straight cantilever beam shown in Figure 7.1 has a cross section of arbitrary shape. It 
is subjected to pure bending by the end couple M,. Let the origin 0 of the coordinate sys- 
tem (x, y, z) be chosen at the centroid of the beam cross section at the left end of the beam, 
with the z axis directed along the centroidal axis of the beam, and the (x, y) axes taken in 
the plane of the cross section. Generally, the orientation of the (x. y) axis is arbitrary. How- 
ever, we often choose the (x,  y) axes so that the moments of inertia of the cross section I,. 
Zy, and Zxy are easily calculated, or we may take them to be principal axes of the cross sec- 
tion (see Appendix B). 

The bending moment that acts at the left end of the beam (Figure 7. la)  is repre- 
sented by the vector Mo directed perpendicular to a plane that forms an angle q5 taken posi- 
tive when measured counterclockwise from the x-z plane as viewed from the positive z 
axis. This plane is called the plane of load or the plane of loads. Consider now a cross sec- 
tion of the beam at distance z from the left end. The free-body diagram of the part of the 
beam to the left of this section is shown in Figure 7.lb.  For equilibrium of this part of the 
beam, a moment M, equal in magnitude but opposite in sense to Mo, must act at section z. 
For the case shown (a12 I q5 I a), the (x, y) components (M,, M y )  of M are related 
to the signed magnitude M of M by the relations M, = M sin q5, M y  = -M cos q5. Since 
a12 I q5 5 a, sin q5 is positive and cos q5 is negative. Since (M,, M y )  are positive (Figure 
7. lb) ,  the sign of M is positive. 
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FIGURE 7.1 Cantilever beam with an arbitrary cross section subjected to pure bending. 

7.1.2 Shear Loading of a Beam and Shear Center 
Defined 

Let the beam shown in Figure 7.2a be subjected to a concentrated force P that lies in the 
end plane (z = 0) of the beam cross section. The vector representing P lies in the plane of 
the load that forms angle @, taken positive when measured counterclockwise from the x-z 
plane as viewed from the positive z axis. Consider a cross section of the beam at distance z 
from the left end. The free-body diagram of the part of the beam to the left of this section 
is shown in Figure 7.26. For equilibrium of this part of the beam, a moment M, with com- 
ponents M, and My, shear components V, and Vy, and in general, a twisting moment T 
(with vector directed along the positive z axis) must act on the section at z. However, if the 
line of action of force P passes through a certain point C (the shear center) in the cross sec- 
tion, then T = 0. In this discussion, we assume that the line of action of P passes through 
the shear center. Hence, T is not shown in Figure 7.2b. Note that in Figure 7.2b, the force 
P requires V,, V,, to be positive [directed along positive (x, y) axes, respectively]. The 
component M, is also directed along the positive x axis. However, since 4 < z l2 ,  My is 
negative (directed along the negative y axis). 

There is a particular axial line in the beam called the bending axis of the beam, 
which is parallel to the centroidal axis of the beam (the line that passes through the cen- 

(a)  

FIGURE 7.2 Cantilever beam with an arbitrary cross section subjected to shear loading. 
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troids of all of the cross sections of the beam). Except for special cases, the bending axis 
does not coincide with the centroidal axis (Figure 7.2). 

The intersection of the bending axis with any cross section of the beam locates a 
point C in that cross section called the shear center of the cross section (see Section 8.1). 
Thus, the bending axis passes through the shear centers of all the cross sections of the 
beam. 

In Section 7.2, formulas are derived for the normal stress component o,, that acts on 
the cross section at z in terms of the bending moment components (M,, My). Also, one 
may derive formulas for the shear stress components (z,,, zzr) resulting from the shear 
forces (V,, V,). However, if the length L of the beam is large compared to the maximum 
cross-section dimension D, such that LID > 5, the maximum shear stress is small com- 
pared to the maximum normal stress. In this chapter we ignore the shear stresses resulting 
from (V,, V,); that is, we consider beams for which L ID > 5. 

For bending of a beam by a concentrated force and for which the shear stresses are 
negligible, the line of action of the force must pass through the shear center of a cross sec- 
tion of the beam; otherwise, the beam will be subjected to both bending and torsion 
(twist). Thus, for the theory of pure bending of beams, we assume that the shear stresses 
resulting from concentrated loads are negligible and that the lines of action of concen- 
trated forces that act on the beam pass through the shear center of a beam cross section. If 
the cross section of a beam has either an axis of symmetry or an axis of antisymmetry, the 
shear center C is located on that axis (Figure 7.3). If the cross section has two or more axes 
of symmetry or antisymmetry, the shear center is located at the intersection of the axes 
(Figures 7 . 3 ~  and 7.34. For a general cross section (Figure 7.1) or for a relatively thick, 
solid cross section (Figure 7.3c), the determination of the location of the shear center 
requires advanced computational methods (Boresi and Chong, 2000). 

In this chapter, unless the shear center is located by intersecting axes of symmetry or 
antisymmetry, its location is approximated. The reader should have a better understanding 
of such approximations after studying Chapter 8. 

7.1.3 Symmetrical Bending 

In Appendix B, it is shown that every beam cross section has principal axes (X, Y). With 
respect to principal axes (X, Y), the product of inertia of the cross section is zero; I ,  = 0. 
The principal axes (X, Y) for the cross section of the cantilever beam of Figure 7.1 are 
shown in Figure 7.4. For convenience, axes (X, Y) are also shown at a section of the beam 
at distance z from the left end of the beam. At the left end, let the beam be subjected to a 
couple M, with sense in the negative X direction and a force P through the shear center C 
with sense in the negative Y direction (Figure 7.4~). These loads are reacted by a bending 

Axis of antisymmetry 
Axis of symmetry 

C 
-a- 

Axis of symmetry 4s --0 of symmetry , C F n t i s y m m e t r y  

(0 )  (b) (d (4 

FIGURE 7.3 (a)  Equilateral triangle section. (b) Open channel section. (c) Angle section. ( d )  Z-section. 
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Y 

FIGURE 7.4 Cantilever beam with an arbitrary cross section. 

moment M = Mx at the cut section with sense in the positive X direction. By Bernoulli’s 
beam theory (Boresi and Chong, 2000), the stress o,, normal to the cross section is given 
by the flexure formula 

MXY (7.1) azzz = - 
I X  

where Mx is positive since Mx is in the positive X sense, Y is the distance from the princi- 
pal axis X to the point in the cross section at which o,, acts, and Zx is the principal moment 
of inertia of the cross-sectional area relative to the X axis. Equation 7.1 shows that a,, is 
zero for Y = 0 (along the X axis). Consequently, the X axis is called the neutral axis of 
bending of the cross section, that is, the axis for which a,, = 0. We take Mx as positive 
when the sense of the vector representing Mx is in the positive X direction. If Mx is 
directed in the negative X sense, Mx is negative. Since Mx is related to a,, by Eq. 7.1, a,, 
is a tensile stress for positive values of Y and a compressive stress for negative values of Y. 
In addition to causing a bending moment component Mx, load P produces a positive shear 
V ,  at the cut section. It is assumed that the maximum shear stress 7, resulting from V ,  is 
small compared to the maximum value of o,,. Hence, since this chapter treats bending 
effects only, we neglect shear stresses in this chapter. 
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Likewise, if a load Q (applied at the shear center C) directed along the positive X 
axis and a moment Mo directed along the negative Y axis are applied to the left end of the 
beam (Figure 7.4b), they are reacted by a bending moment M = My directed along 
the positive Y axis. The normal stress distribution o,,, resulting from My, is also given by 
the flexure formula. Thus, 

(7.2) 
MYX ozzz = -- 
IY 

where M y  is positive since My is in the positive Y sense, X is the distance from the princi- 
pal axis Y to the point in the cross section at which o,, acts, and Zy is the principal moment 
of inertia of the cross-sectional area relative to the Y axis. The negative sign arises from the 
fact that a positive M y  produces compressive stresses on the positive side of the X axis. 
Now for X = 0 (along the Y axis), o,, = 0. Hence, in this case, the Y axis is the neutral axis 
of bending of the cross section, that is, the axis for which o,, = 0. In either case (Eq. 7.1 or 
7.2), the beam is subjected to symmetrical bending. (Bending occurs about a neutral axis 
in the cross section that coincides with the corresponding principal axis.) 

As a simple case, consider a straight cantilever beam of constant rectangular cross 
section (Figure 7 . 5 ~ )  subjected to the end couple M, directed along the negative X axis. 
Axes (X, Y) are principal axes of the cross section, and axis z is the centroidal axis of the 
beam. In this case, the shear center and the centroid of the cross section coincide, and 
hence the bending axis coincides with the centroidal axis z. Consider now a cross section 
of the beam at distance z from the left end. The free-body diagram of the part of the beam 
to the left of this section is shown in Figure 7 3 .  For equilibrium of this part, a moment 
Mx equal in magnitude to Mo, but opposite in sense, acts at section z. That is, Mx is 
directed in the positive X sense. Hence, the stress o, normal to the cross section is (see Eq. 7.1) 

The magnitude om, of the maximum flexural stress occurs at Y = +h/2. For positive Mx, 
o,, is tensile at Y = h/2  and compressive at Y = -h/2. Also, Zx = bh3/12 for the rectangular 
cross section. Hence, for a constant rectangular cross section 

6IMxI omax = - 
bh2 

where lMxI denotes the absolute value of M,. More generally for a beam of general cross 
section subjected to symmetrical bending, the flexural stress increases linearly from zero at 

(0 )  (b) 

FIGURE 7.5 Cantilever beam with rectangular cross section. 
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the neutral axis (Y = 0) to an absolute maximum at either the top or bottom of the beam, 
whichever is farther from the neutral axis. For example, let c1 be the distance from the neu- 
tral axis to the bottom of the beam and c2 be the distance to the top of the beam. Then, 

(7.3) 

where c,, is the larger of c1 and c2, and Sx = Ix/cm,. The factor Sx is called the elastic 
section modulus. For a beam of constant cross section, Sx is a constant. The elastic section 
moduli for many manufactured cross sections are listed in handbooks for the convenience 
of design engineers. See also Appendix C. 

Equation 7.3 indicates that om, is inversely proportional to S,. For example, 
the five beam cross sections shown in Figure 7.6 all have a cross-sectional area of 
10,400 mm2. The magnitude of Sx increases from 149 x lo3 mm3 for the solid circular 
cross section to 1.46 x lo6 mm3 for the S460 x 81.4 I-beam. For a given cross section 
shape, the magnitude of Sx increases with depth of cross section and as a larger portion of 
the area is moved away from the neutral axis. However, the depth of the beam cross sec- 
tion (and the web thickness of a standard I-beam) is limited to prevent local buckling of 
the cross section elements (see Chapter 12). 

7.1.4 Nonsymmetrical Bending 

In Figure 7.4c, the beam is subjected to moment Mo with components in the negative 
directions of both the X and Y axes as well as concentrated forces P and Q acting through 
the shear center C. These loads result in a bending moment M at the cut section with posi- 
tive projections (Mx, MY). For this loading, the stress o,, normal to the cross section may 
be obtained by the superposition of Eqs. 7.1 and 7.2. Thus, 

M,Y M y X  
ozzz = --- I ,  I Y  

(7.4) 

In this case, the moment M = (Mx, My) is not parallel to either of the principal axes ( X ,  Y). 
Hence the bending of the beam occurs about an axis that is not parallel to either the X or Y 
axis. When the axis of bending does not coincide with a principal axis direction, the bend- 
ing of the beam is said to be nonsymmetrical. The determination of the neutral axis of 
bending of the cross section for nonsymmetrical bending is discussed in Section 7.2. 

7.1.5 Plane of Loads: Symmetrical 
and Nonsymmetrical Loading 

Often, a beam is loaded by forces that lie in a plane that coincides with a plane of symme- 
try of the beam, as depicted in Figure 7.7. In this figure, the y axis is an axis of symmetry 
for the cross section; it is a principal axis. Hence, if axes (x, y )  are principal axes for the 
cross section, the beams in Figures 7 . 7 ~  and b undergo symmetrical bending, that is, bend- 
ing about a principal axis of a cross section, since the moment vector in Figure 7 . 7 ~  and 
the force vectors in Figure 7.7b are parallel to principal axes. We further observe that since the 
shear center lies on the y axis, the plane of the load contains the axis of bending of the beam. 

Consider next two beams with cross sections shown in Figure 7.8. Since a rectangu- 
lar cross section (Figure 7 . 8 ~ )  has two axes of symmetry that pass through its centroid 0, 
the shear center C coincides with the centroid 0. Let the intersection of the plane of the 
loads and the plane of the cross section be denoted by line G L ,  which forms angle 
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51 rnrn 
+ I - +  

+ 288 rnm ----)1 

S, = 149 x lo3 mm3 

FIGURE 7.6 Cross sections with the same area but different values of S,. 

S, = 177 x l o3  mrn3 S, = 354 x lo3 rnm3 S, = 689 x lo3 rnm3 

S460 x 81.4 

S, = 1.46 1 x lo6 mm3 

(0) \ z  (b) 1 2  

FIGURE 7.7 Symmetrical bending: Plane of loads coincident with the plane of symmetry of the beam. ( a )  Couple loads. 
(b) Lateral loads. 

4 measured counterclockwise from the x-z plane and passes through the shear center C. 
Since the plane of loads contains point C, the bending axis of the rectangular beam lies in 
the plane of the loads. If the angle 4 equals 0 or n/Z, the rectangular beam will undergo 
symmetrical bending. For other values of 4, the beam undergoes nonsymmetrical bending, 
that is, bending for which the neutral axis of bending of the cross section does not coincide 
with either of the principal axes X-Y: 

Intersection of 
plane of the loads 

Intersection of 
plane of the loads 

with cros;!idj, plane of 

X X 

1 
L Y  

(a) (b) 

FIGURE 7.8 Nonsymmetrically loaded beams. (a)  Rectangular cross section. (b)  Channel cross 
section. 



270 CHAPTER 7 BENDING OF STRAIGHT BEAMS 

EXAMPLE 7.1 
Cantilever Beam 

Subjected ta 
Uniform Loaa 

Solution 

In the case of a general channel section (Figure 7.8b), the principal axes X-Y are 
located by a rotation through angle 8 (positive 8 is taken counterclockwise) from the x-y 
axes as shown. The value of 8 is determined by Eq. B.12 in Appendix B. Although the 
plane of loads contains the shear center C (and hence the bending axis of the beam), it is 
not parallel to either of the principal planes X-z or Y-z. Hence, in general, the channel 
beam (Figure 7.8b) undergoes nonsymmetrical bending. However, for the two special 
cases, Cp = 8 or Cp = 8 + z/2, the channel beam'does undergo symmetrical bending. 

A cantilever beam (Figure E 7 . l ~ )  has a design requirement that its depth h be twice its width. It is 
made of structural steel (E = 200 GPa and Y = 250 m a ) .  The design of the beam is based on a factor 
of safety SF = 1.9 for failure by general yielding when the beam is subjected to a uniform load w = 
1.0 kN/m. Determine the depth of the beam's cross section. 

FIGURE E7.1 

To account for the safety factor, we multiply w by 1.9. Yielding will be initiated at the location where 
the bending moment is maximum. By Figure E7.1~2, the maximum bending moment occurs at the 
wall. The free-body diagram of the beam to the left of the wall is shown in Figure E7.lb. Taking 
moments about the horizontal axis at section& we have 

or 

M, = -8550 N m 

The negative sign for M, indicates that the bottom of the beam is in compression and the top is in ten- 
sion. By Eq. 7.3,  the maximum magnitude of flexural stress is 

lMxlCmax - 8550(h/2)  - -- 102,600 
I ,  h 4 m  h3 

om, = - - 

At yielding, omax = Y = 250 X lo6. Hence, 

h = 0.0743 m = 74.3 mm 
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EXAMPLE 7.2 
Symmetrically 

Loaded 
T-Section Beam 

Solution 

A simple beam is subjected to loads of 1.5 kN and 4.5 kN, as shown in Figure E 7 . 2 ~ .  The cross sec- 
tion of the beam is shown in Figure E7.26. 

(a) Determine the values for the maximum tensile and the maximum normal stresses oZz for the sec- 
tion at midspan of the beam. 

(a) Sketch the distribution of o,, for the section at midspan. 

I 

I 
I 
I 

500 mm-4 

mm 

a,, = -58.5 MPa 

500 mm 4 uzz = 117.0 MPa 
Rl 

(4 

FIGURE E7.2 

(a) To locate the centroid of the cross section, we consider the fist area moments of two rectangles 1 
and 2 in Figure E7.2b, relative to the bottom of the T-section. Since the total area is A = lo00 mm2 
and the areas of the rectangles are A, =A2 = 500 mm2, 

AYo = AlY, +A,Y2 

where y1 and y2 are the distances from the centroids of rectangles 1 and 2 from the bottom of the 
beam. Hence, substituting known values for area and distance into this equation, we obtain 

yo = c1  = 40.0mm 

and therefore at the top of the beam (Figure E7.B) 

c2 = 20mm 

The moment of inertia about the centroidal axis, found by the parallel axis theorem and Figure 
E7.2b, is 

1 3  2 1  3 2 I ,  = -blhl+Alyl+-b2h2+ApY* 
12 12 

4 -1 4 = 333,300mm = 3.333 x 10 m 

where TI and T2 are centroidal distances of Al and A, from the x axis, respectively. The free-body 
diagram of the beam segment to the left of midspan is shown in Figure E7.2~.  The equations of equi- 
librium for this portion of the beam yield 

R ,  = 2250 N, V y  = 750 N, M, = 975 N *  m 
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The maximum compressive stress occurs at the top of the beam, at a distance y = -c2 - 20 mm from 
the centroidal axis: I 
(b) The flexural stress o,, varies linearly from y = 40 to y = -20 mm over the cross section at midspan 
and is shown in Figure E7.2d. I 

7.2 
TO NONSYMMETRICAL BENDING 

BENDING STRESSES IN BEAMS SUBJECTED 

Let a cutting plane be passed through a straight cantilever beam at section z. The free-body 
diagram of the beam to the left of the cut is shown in Figure 7 . 9 ~ .  The beam has constant 
cross section of arbitrary shape. The origin 0 of the coordinate axes is chosen at the cen- 
troid of the beam cross section at the left end of the beam, with the z axis taken parallel to 
the beam. The left end of the beam is subjected to a bending couple M, that is equilibrated 
by bending moment M acting on the cross section at z, with positive components (Mx, My) 
as shown. The bending moment M = (M,, My) is the resultant of the forces due to the nor- 
mal stress o,, acting on the section (Figure 7.9b). For convenience, we show (x, y) axes at 
the cross section z. It is assumed that the (x ,  y) axes are not principal axes for the cross sec- 
tion. In this article, we derive the load-stress formula that relates the normal stress o,, act- 
ing on the cross section to the components (Mx, My). 

The derivation of load-stress and load-deformation relations for the beam requires 
that equilibrium equations, compatibility conditions, and stress-strain relations be satis- 
fied for the beam along with specified boundary conditions for the beam. 

7.2.1 Equations of Equilibrium 

Application of the equations of equilibrium to the free body in Figure 7.9b yields (since 
there is no net resultant force in the z direction) 

0 = o , , d A  I 
M, = j Y o , ,  d A  

M Y = - I x o , , d A  

(7.5) 

where d A  denotes an element of area in the cross section and the integration is performed 
over the area A of the cross section. The other three equilibrium equations are satisfied 
identically, since o,, is the only nonzero stress component. To evaluate the integrals in Eq. 
7.5, it is necessary that the functional relation between o,, and (x ,  y) be known. The deter- 
mination of o,, as a function of (x ,  y) is achieved by considering the geometry of deforma- 
tion and the stress-strain relations. 
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Plane of load 
f 

\ 

Y 1 
Y 

FIGURE 7.9 Pure bending of a nonsymmetrically loaded cantilever beam. 

7.2.2 Geometry of Deformation 

We assume that plane sections of an unloaded beam remain plane after the beam is sub- 
jected to pure bending. Consider two plane cross sections perpendicular to the bending 
axis of an unloaded beam such that the centroids of the two sections are separated by a dis- 
tance Az. These two planes are parallel since the beam is straight. These planes rotate with 
respect to each other when moments M, and M y  are applied. Hence, the extension ezz of 
longitudinal fibers of the beam between the two planes can be represented as a linear func- 
tion of (x, y ) ,  namely, 

( 4  

where a”, b”, and c” are constants. Since the beam is initially straight, all fibers have the 
same initial length Az so that the strain cZz can be obtained by dividing Eq. (a) by Az. Thus, 

(7.6) 

ezz = a” + b”x + c”y 

E,, = a’ + b’x + c’y 

where E , ,  = ez,JAz, a’ = a”JAz, b’ = b“/Az, and c’ = c“JAz. 

7.2.3 Stress-Strain Relations 

According to the theory of pure bending of straight beams, the only nonzero stress compo- 
nent in the beam is o,,. For linearly elastic conditions, Hooke’s law states 

Ozz = E E Z Z  (7.7) 

Eliminating E , ,  between Eqs. 7.6 and 7.7, we obtain 

oZz = a + b x + c y  

where a = Ea’, b = Eb‘, and c = E d .  

7.2.4 Load-Stress Relation for Nonsymmetrical 
Bending 

Substitution of Eq. 7.8 into Eqs. 7.5 yields 

(7.8) 
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0 = ( a + b x + c y ) d A  = a d A + b  x d A + c  y d A  

(7.9) 
2 

I I I  I 
I M, = ( a y  + bxy + c y 2 )  dA  = a l  y dA  + b l x y  dA  + c j  y dA  

My = - I ( a x + b x  + c x y ) d A  = - a  x d A - b  x d A - c  x y d A  I I 2  I 2 

Since the z axis passes through the centroid of each cross section of the end beam, 

I x d A  = I y dA = 0 .  The other integrals in Eqs. 7.9 are defined in Appendix B. Equa- 

tions 7.9 simplify to 
0 = aA 

M, = b lxy+c l ,  

M y  = -bI - c I  
Y XY 

(7.10) 

where I ,  and Z,, are the centroidal moments of inertia of the beam cross section with 
respect to the x and y axes, respectively, and Ixy is the centroidal product of inertia of the 
beam cross section. Solving Eqs. 7.10 for the constants a, b, and c, we obtain 

a = 0 (because A f 0 )  

M I +M,I,, 
b = -  y x  

I I - I x y  2 
X Y  (7.1 1) 

M I +Mylxy 
X Y  

2 c =  
I I - I x y  

X Y  

Substitution of Eqs. 7.1 1 into Eq. 7.8 gives the normal stress distribution ozz on a given 
cross section of a beam subjected to nonsymmetrical bending in the form 

(7.12) 

Equation 7.12 is not the most convenient form for the determination of the maximum value of 
the flexural stress oZr Also, Eq. 7.12 does not lend itself readily to visualization of the bending 
behavior of the beam. A more convenient and a more visually meaningful form follows. 

7.2.5 Neutral Axis 

Before the location of the points of maximum tensile and compressive stresses in the cross 
section are determined, it is useful to locate the neutral axis. For this purpose, it is desir- 
able to express the neutral axis orientation in terms of the angle $ between the plane of the 
loads and the x-z plane, where $ is measured positive counterclockwise (Figure 7.8). The 
magnitude of $ is generally in the neighborhood of n/2. The bending moments M, and M y  
can be written in terms of $ as follows: 

M, = Msin$ 

My = -MCOS$ 
(7.13) 

in which M is the signed magnitude of moment M at the cut section. The sign of M is pos- 
itive if the x projection of the vector M is positive; it is negative if the x projection of M is 
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negative. Because the (x, y )  axes are chosen for the convenience of the one making the cal- 
culations, they are chosen so that the magnitude of M ,  is not zero. Therefore, by Eqs. 7.13, 

MY cot@ = -- 
MX 

(7.14) 

The neutral axis of the cross section of a beam subjected to nonsymmetrical bending 
is defined as the axis in the cross section for which o,, = 0. Thus, by Eq. 7.12, the equation 
of the neutral axis of the cross section is 

(7.15) 

where a is the angle between the neutral axis of bending and the x axis; a is measured 
positive counterclockwise (Figure 7.9), and 

MxIxy + MyIx tana = M I + M y l x y  
X Y  

(7.16) 

Since x = y = 0 satisfies Eq. 7.15, the neutral axis passes through the centroid of the sec- 
tion. The right side of Eq. 7.16 can be expressed in terms of the angle @ by using E!q. 7.14. Thus, 

I,, - 1,cot @ 
I , - I  X Y  cot@ tana = (7.17) 

7.2.6 More Convenient Form for the Flexure Stress ozr 
Elimination of M y  between Eqs. 7.12 and 7.16 results in a more convenient form for the 
normal stress distribution o,, for beams subjected to nonsymmetrical bending, namely, 

(7.18) 

where tan a is given by Eq. 7.17. Once the neutral axis is located on the cross sections at 
angle a as indicated in Figure 7.9b, points in the cross section where the tensile and com- 
pressive flexure stresses are maxima are easily determined. The coordinates of these points 
can be substituted into Eq. 7.18 to determine the magnitudes of these stresses. If M ,  is 
zero, Eq. 7.12 may be used instead of Eq. 7.18 to determine magnitudes of these stresses, 
or axes (x, y )  may be rotated by z/2 to obtain new reference axes (x’, y’). 

Note: Equations 7.17 and 7.18 have been derived by assuming that the beam is sub- 
jected to pure bending. These equations are exact for pure bending. Although they are not 
exact for beams subjected to transverse shear loads, often the equations are assumed to be 
valid for such beams. The error in this assumption is usually small, particularly if the beam 
has a length of at least five times its maximum cross-sectional dimension. 

In the derivation of Eqs. 7.17 and 7.18, the (x, y )  axes are any convenient set of 
orthogonal axes that have an origin at the centroid of the cross-sectional area. The equa- 
tions are valid if (x, y) are principal axes; in this case, lxy = 0. If the axes are principal axes 
and @ = n/2, Eq. 7.17 indicates that a = 0 and Eq. 7.18 reduces to Eq. 7.1. 

For convenience in deriving Eqs, 7.17 and 7.18, the origin for the (x, y ,  z )  coordinate 
axes was chosen (see Figure 7.9b) at the end of the free body opposite from the cut section 
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EXAMPLE 7.3 
Channel Section 

Beam 

Solution 

with the positive z axis toward the cut section. The equations are equally valid if the origin 
is taken at the cut section with the positive z axis toward the opposite end of the free body. 
If Cp2 is the magnitude of Cp for the second choice of axes and Cpl is the magnitude of Cp for 
the first choice of axes, then Cp2 = n - Cpl. 

The cantilever beam in Figure E7 .3~  has a channel section as shown in Figure E7.3b. A concentrated 
load P = 12.0 kN lies in the plane making an angle $ = z/3 with the x-z plane. Load P lies in the 
plane of the cross section of the free end of the beam and passes through shear center C; in Chapter 8 
we find that the shear center lies on they axis as shown. Locate points of maximum tensile and com- 
pressive stresses in the beam and determine the stress magnitudes. 

FIGURE E7.3 

Several properties of the cross-sectional area are needed (see Appendix B): 

2 6 4  

6 4  

A = 10,000mm , 

yo = 82.0 mm, 

I, = 3 9 . 6 9 ~  10 mm 

I, = 30.73 x 10 mm 

I ,  = 0 

The orientation of the neutral axis for the beam, given by Eq. 7.17, is 

39~690~000(o.~774) = -0.7457 tana = --cot$ = - 1, 
I ,  30,730,000 

a = -0.6407 rad 

The negative sign indicates that the neutral axis n-n, which passes through the centroid (x = y = 0). is 
located clockwise 0.6407 rad from the x axis (Figure E7.3b). The maximum tensile stress occurs at 
point A, whereas the maximum compressive stress occurs at point B. These stresses are given by Eq. 
7.18 after M, has been determined. From Figure E7.3~ 

M = -3.OOP = -36.0 kN m 
M ,  = MsinQ = -31.18 kN m 

I, - I , ,  tana 
Mx(yA - xA tan a) 

UA = 
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EXAMPLE 7.4 
Angle-Beam 

Solution 

- -31,180,000[- 118 - (-70)(-0.7457)1 - 
39,690,000 

= 133.7MPa 

-31,180,000[82 - 70(-0.7457)] 
= -105.4MPa 39,690,000 0, = 

Plates are welded together to form the 120 mm by 80 mm by 10 mm angle-section beam shown in 
Figure E7.4~. The beam is subjected to a concentrated load P = 4.00 kN as shown. The load P lies in 
the plane making an angle 4 = 2x13 with the x-z plane. Load P passes through shear center C which 
is located at the intersection of the two legs of the angle section. Determine the maximum tensile and 
compressive bending stresses at the section of the beam where the load is applied. 

(a) Solve the problem using the load-stress relations derived for nonsymmetrical bending. 

(b) Solve the problem using Eq. 7.4. 

Plane 

FIGURE E7.4 

B 
of the load 

\ 

X 

(a) Several properties of the cross-sectional area are needed (see Appendix B): 

2 6 4  

6 4  

A = 1900 mm , 

xo = 19.74 mm, 

yo = 39.74 mm, I,, = -0.973 x 10 mm4 

I, = 2.783 x 10 mm 

I, = 1.003 x 10 mm 

6 

The orientation of the neutral axis for the beam is given by Eq. 7.17. Thus, 

I,, - I,cot 4 
I,-I,,cot~ 

tana = 

- 0.973 x lo6 - 2.783 x 106(-0.5774) 

1.003 x lo6 - (-0.973 x 106)(-0.5774) 
= 1.436 - - 

a = 0.9626 rad 
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The positive sign indicates that the neutral axis n-n, which passes through the centroid (x  = y = 0), is 
located counterclockwise 0.9628 rad from the x axis (Figure E7.4b). The maximum tensile stress 
occurs at point A, whereas the maximum compressive stress occurs at point B. These stresses are 
given by Eq. 7.18 after M, has been determined. From Figure E7.4a 

M = 1.2P = 4.80 kN m 

M, = M s i n 4  = 4.80 x 103(0.8660) = 4.157 kN m 

0, = 
M x ( y A  - x A  tan a) 

I,-I tana 
X Y  

- - 4.157 x 106[39.74 - (-60.26)( 1.4363)] 

2.783 x lo6 - (-0.973 x lo6)( 1.4363) 

= 125.6 MPa 

0, = 4.157 x lo6[- 80.26 - 19.74( 1.436311 

2.783 x lo6 - (-0.973 x lo6)( 1.4363) 

= -108.0 MPa 

(b) To solve the problem using Eq. 7.4, it is necessary that the principal axes for the cross section be 
determined. The two values of the angle 8 between the x axis and the principal axes are given by Eq. 
B.12. Thus, we obtain 

tan28 = -21, = - 2(-0’973 lo6) = 1.0933 
l x - l y  2.783 x lo6- 1.003 x lo6 

(O2 = -1.156 rad) 8, = 0.4150 rad 

The principal X and Y axes are shown in Figure E7.2b. Thus (see Eq. B.10 in Appendix B) 

2 2 6 4  I ,  = 1,cos 8, +Iys in  8, -21,ysin81cos81 = 3 . 2 1 2 ~  10 mm 

I, = I , + I , , - I ,  = 0 . 5 7 4 ~  10 mm 6 4  

Note that now angle 4 is measured from the X axis and not from the x axis as for part (a). Hence, 

4 = 9- 8, = 1.6794 rad 
3 

Angle a‘, which determines the orientation of the neutral axis, is now measured from theX axis (Fig- 
ure E7.4b), and is given by Eq. 7.17. Hence, we find 

tans' = -- Ixcot4 - - - 3.212 x 106(-0.1090) = o.6098 

I ,  0.574 x lo6 

a’ = 0.5476 rad 

which gives the same orientation for the neutral axis as for part (a), that is, 

a = a’+ 8, 

= 0.5476 + 0.4150 

= 0.9626 rad 

To use Eq. 7.4 relative to axes (X, Y), the X and Y coordinates of points A and B are needed. They 
are (Eq. B.9) 
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